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Abstract. Calculations of nonequilibrium processes become increasingly feasable in quantum field theory
from first principles. There has been important progress in our analytical understanding based on 2PI
generating functionals. In addition, for the first time direct lattice simulations based on stochastic quanti-
zation techniques have been achieved. The quantitative descriptions of characteristic far-from-equilibrium
time scales and thermal equilibration in quantum field theory point out new phenomena such as prether-
malization. They determine the range of validity of standard transport or semi-classical approaches, on
which most of our ideas about nonequilibrium dynamics were based so far. These are crucial ingredients to
understand important phenomena in high-energy physics related to collision experiments of heavy nuclei,
early universe cosmology and complex many-body systems.

PACS. 11.10.Wx Finite-temperature field theory — 12.38.Mh Quark-gluon plasma — 05.70.Ln Nonequi-

librium and irreversible thermodynamics

1 Characteristic far-from-equilibrium time
scales

Understanding the dynamics of quantum fields far away
from the ground state or thermal equilibrium is a challenge
touching many aspects of physics, ranging from early cos-
mology or collision experiments with heavy nuclei to ul-
tracold quantum gases in the laboratory. One of the most
crucial aspects concerns the characteristic time scales on
which thermal equilibrium is approached. Much of the re-
cent interest derives from observations in collision experi-
ments of heavy nuclei at RHIC. The experiments seem to
indicate the early validity of hydrodynamics after some-
what less than 1 fm, whereas the present theoretical under-
standing of QCD suggests a longer thermal equilibration
time.

Here it is important to note that different quantities
effectively thermalize on different time scales and a com-
plete thermalization of all quantities may not be necessary
to explain the observations. This has been pointed out
in ref. [1], where it was shown for a chiral quark-meson
model that the prethermalization of important observ-
ables occurs on time scales dramatically shorter than the
thermal equilibration time. As an example, fig. 1 shows
the nonequilibrium time evolution of the fermion occupa-
tion number for three different momentum modes in this
model. The evolution is given for two different initial par-
ticle number distributions A and B shown in the insets,
with the same energy density. Therefore, both runs have
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Fig. 1. Fermion occupation number for three different mo-
mentum modes as a function of time in the chiral quark-meson
model of ref. [1].

to lead to the same distributions in thermal equilibrium.
The vertical line in fig. 1 marks the characteristic time
scale ~ tgamp, after which the details about the initial dis-
tributions A or B are effectively lost. One observes that
this happens far before the late-time approach to thermal
equilibrium. The time tgamp for the effective loss of initial
condition details is an important characteristic time scale
in nonequilibrium dynamics, which is very different from
the thermal equilibration time ¢.4. Note that the long-time
behavior to thermal equilibrium is shown on a logarithmic
scale in fig. 1 (in units of the scalar thermal mass m).
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In contrast to the very long time t.q for complete
thermal equilibration, prethermalization of the (average)
equation of state sets in extremely rapidly on a time scale

tpt < tdamp < teq . (1)

In fig. 2 we show the ratio of the average pressure (trace
over space-like components of the energy momentum ten-
sor) over the energy density, w = p/e, as a function of
time. One observes that an almost time-independent equa-
tion of state builds up very early, even though the system
is still far from equilibrium! Here the prethermalization
time %, is of the order of the characteristic inverse mass
scale m~!. This is a typical consequence of the loss of
phase information by summing over oscillating functions
with a sufficiently dense frequency spectrum. If the “tem-
perature” (T'), i.e. average kinetic energy per mode, sets
the relevant scale one finds T ¢, =~ 2-2.5 [1]. For T' 2 400—
500 MeV one obtains a very short prethermalization time
tpt of somewhat less than 1fm.

This is consistent with very early hydrodynamic be-
havior, however, it is not sufficient as noted in refs. [1,
2]. Beyond the average equation of state, a crucial ingre-
dient for the applicability of hydrodynamics for collision
experiments [3] is the approximate isotropy of the local
pressure. More precisely, the diagonal (space-like) compo-
nents of the local energy-momentum tensor have to be ap-
proximately equal. Of particular importance is the possi-
ble isotropization far from equilibrium. The relevant time
scale for the early validity of hydrodynamics could then
be set by the isotropization time. The analysis of simple
models lead to an isotropization time which is given by
the characteristic damping time ~ tgamp (cf. fig. 1) [4].
However, a possible weak-coupling mechanism for faster
isotropization in gauge theories such as QCD has been
identified in ref. [2] in terms of plasma instabilities [5].
Whether this can explain the experimental observations
or whether they suggest that we have to deal with some
new form of a “strongly coupled Quark Gluon Plasma” is
an important open question.

2 What can we learn from transport or
kinetic theory?

For out-of-equilibrium calculations there are additional
complications, which do not appear in thermal equilibrium
or vacuum. Standard approximation techniques, such as
perturbation theory, are not uniform in time and fail to de-
scribe thermalization. Aspects of systems with high occu-
pation numbers are often successfully described using clas-
sical field theory methods. However, classical Rayleigh-
Jeans divergences and the lack of genuine quantum effects
—such as the approach to quantum thermal equilibrium
characterized by Bose-Einstein or Fermi-Dirac statistics—
limit their use.

Most theoretical approaches to the important question
of thermalization have been limited to semi-classical sys-
tems in the weak-coupling limit so far. With the advent
of new computational techniques a more direct account of
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Fig. 2. The ratio of the average pressure over the energy den-
sity w as a function of time. The inset shows the early stages for
two different couplings h and demonstrates that the prether-
malization time is rather independent of the interaction details.

quantum field degrees of freedom becomes more and more
possible. There has been important progress in our under-
standing of nonequilibrium quantum fields using suitable
resummation techniques based on 2PI generating func-
tionals [6]. They have led to quantitative descriptions of
far-from-equilibrium dynamics and thermalization in a va-
riety of scalar and fermionic quantum field theories so far.
An example for the results of such a first-principle calcu-
lation within a quark-meson model in 341 dimensions is
given in figs. 1 and 2. One important application of these
quantum field theoretical 2PI methods is to test standard
transport or semi-classical approaches, on which most of
our ideas about nonequilibrium dynamics are based so far.

Several of these tests have been done for simple scalar
AP* quantum field theories for not too strong couplings A,
which are well under quantitative control using 2PI tech-
niques. Following ref. [4], we consider a class of anisotropic
initial conditions with an initially high occupation num-
ber of modes moving in a narrow momentum range around
the “beam direction” p3 = p; = £pis. The spatially ho-
mogeneous occupation numbers for modes with momenta
perpendicular to this direction, p? + p3 = p?, are small
or vanishing. The situation is reminiscent of some aspects
of the anisotropic initial stage in the central region of two
colliding wave packets!. Of course, a peaked initial parti-
cle number distribution is not very specific and is thought
to exhibit characteristic properties of nonequilibrium dy-
namics for a large variety of physical situations.

An example of the earlier stages of such an evolution
is shown in fig. 3. Shown are snapshots of the occupation
number distribution as a function of p, (vertical) and pj
(horizontal), where bright (dark) regions correspond to
high (low) occupation numbers. The initial Gaussian dis-
tribution is centered around a momentum of the order
of the renormalized thermal mass, and we will consider

1 Other interesting scenarios include “color-glass”—type ini-
tial conditions with distributions ~ exp(—\/pi/Qs) peaked
around p3 = 0 with “saturation” momentum Qs.
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Fig. 3. Snapshots at times t ~ 0, tdamp/2, tdamp and 3taamp/2
of the initially anisotropic occupation number distribution as
a function of py (vertical) and p| (horizontal). The shown res-
olution was achieved by using a 64 spatial lattice.

amplitudes of order one for the comparisons below (see
[4] for details). From fig. 3 it can be seen that after the
characteristic damping time tq,mp the distribution starts
to become rather independent of the momentum direc-
tion. Finally, at about 3tgamp/2 the figure shows an al-
most perfectly isotropic situation. We emphasize that the
distribution is still far from equilibrium. The situation is
similar to what is displayed in fig. 1, where the vertical line
indicates about tgamp. In general, we find that the char-
acteristic damping time is well described by the standard
relaxation time approximation

; N 2w(ed) N dtm 5
dump = "y = ey (2)

where the imaginary part of the thermal equilibrium self-
energy — %Y /2 in Fourier space is evaluated for the on-
shell frequency w(©® for the momentum py. The second
equality in (2) is only valid for sufficiently high tempera-
tures and weak couplings. We emphasize that the relax-
ation time approximation (2) does not describe the ther-
malization time teq [4].

The question is whether transport or kinetic equations
can be used to quantitatively describe the early-time be-
havior ¢ < tqamp, which is necessary if their application
to the problem of fast apparent thermalization explained
in sect. 1 is viable. The derivation of transport equations
is standard. The evolution of particle number distribu-
tions is encoded in the time-ordered two-point correlation
function. Its imaginary and real part is determined by the
commutator and anti-commutator of two fields:

[@(2), 2(y))),
{2(x), 2(y)})- 3)

p(lE, y) =

i
1
F(Sﬂ, y) = 5
Here p(z,y) denotes the spectral function and F(z,y) the
statistical two-point function. While the spectral func-
tion encodes the spectrum of the theory, the statisti-
cal propagator gives information about occupation num-
bers. Loosely speaking, the decomposition makes explicit
what states are available and how they are occupied. For
nonequilibrium F'(z,y) and p(x, y) are in general two inde-
pendent two-point functions, whose exact time evolution

equation reads?

(O, + M?(z)] F(z,y) =

IO o0
—/ dzo/ d*25,(z,2)F(2,y)
0 —00

+ /Oyo dz° /_O; d*28r(z, 2)p(2, y), (4)

[Dz + MQ(JU)] p(a:,y) =
_/: dz° /_OO d*25,(z, 2)p(2, ). (5)

These are causal equations with characteristic “memory”
integrals, which integrate over the time history of the
evolution starting at time ty = 0. Since they are ex-
act they are equivalent to any kind of identity for the
two-point functions such as Schwinger-Dyson/Kadanoff-
Baym equations. Here Xg(x,y) denotes the real part
and —X,(x,y)/2 the imaginary part of the self-energy
Y, where the local contribution is taken into account in
M?(z). In 2PI approximations the self-energy X is ob-
tained from the two-particle irreducible effective action [7].
Here we consider a three-loop 2PI effective action [4]. It
includes direct scatterings, off-shell and memory effects.
Most importantly in this context, it employs no derivative
expansion. The latter is a basic ingredient for transport
or kinetic theory.

Transport equations are obtained from the exact equa-
tions by the following prescriptions:

1) The lower bound (tgp = 0) of the time integrals in
(4) is sent to the infinite past, i.e. tg — —oo. Of course,
a system that thermalizes would have reached already
equilibrium at any finite time if initialized in the remote
past. Therefore, in practice, a “hybrid” description is em-
ployed: transport equations are initialized by prescribing
F, p and derivatives at a finite time using the equations
with tg — —o0 as an approximate description.

2) Employ a gradient expansion. In practice, this ex-
pansion is carried out to lowest order (LO) or next-to-
lowest order (NLO) in the number of derivatives with re-
spect to the center coordinates X* = (z* + y#)/2 and
powers of the relative coordinates s* = z# — y*.

3) Even for finite X° one assumes that the relative-
time coordinate s® ranges from —oo to oo in order to
achieve a convenient description in Wigner space, i.e. in
Fourier space with respect to the relative coordinates.

We emphasize that the ad hoc approximations 1) and
3) are in general not controlled by a small expansion pa-
rameter. They require a loss of information about the de-
tails of the initial state. More precisely, they can only
be expected to be valid for sufficiently late times times
t when initial-time correlations become negligible, i.e.
((0,Z)D(t, 7)) ~ 0. The standard approximations 1) and
3) may, in principle, be evaded. However, if they are not

2 For a detailed derivation see, e.g., ref. [6]. We are consid-
ering the equations for Gaussian initial conditions, which are
underlying transport equations. More involved initial condi-
tions can be considered using higher n-PI effective actions [6].
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Fig. 4. Comparison of LO, NLO and full result for the on-
shell 2w8Xol~7 with A = 0.5. The LO transport equation fails
to describe the full results until rather late times. Taking into
account the substantial NLO corrections the gradient expan-
sion becomes quite accurate for times larger than about tqamp.

applied then a gradient expansion would become too cum-
bersome to be of use in practical calculations.

The NLO transport equations for F/(X;p)= [d*se’*x
F(X +5/2,X — s/2) and g(X;p) = —i [d?sep(X +
s/2,X — s/2) in Wigner space are given by

[2p"0xn + (Oxu M? (X)) 0,,] F (X,p) =
5o (X,p) F(X,p) — Zr (X,p) 8(X,p)
+ {2[0 (X,p) 5 ReéR (X,p)}PB

+{ReZn (X.p) F(X.p)} . (6)

[2p“aXu + (0xu M? (X)) 0,] 0 (X, p) =
{£.(Xp) ReGr (X,p)}

{RexR<X P.EX.p} (7)

B
where GR(x y) = 0% — y")p(x,y) and Tr(z,y) =
O(z° — y")X,(x,y) denote the retarded propagator and
self-energy, and {...}pp are the Poisson brackets. The cor-
responding LO equations are obtained by neglecting all

contributions of order ((‘9)(“8“)2 in (6). The LO equa-
tions are typically used to obtain kinetic equations with
the further assumption of a quasi-particle picture.

Figure 4 shows the time evolution of the on-shell
derivative 2wdxo F'. The thick curve represents the “full”
result, which is obtained from solving the evolution equa-
tions (4) and (5) for the three-loop 2PI effective action.
For comparison, we evaluate the same quantity using the
LO gradient expansion according to eq. (6). For this we
evaluate the RHS of the LO terms in eq. (6) using the
full result for F. If the gradient expansion to lowest order
is correct, then both results have to agree. Indeed, one
finds that the curves for the LO (dashed line) and the
full result indeed agree at sufficiently late times. Taking

into account the NLO contributions the agreement can be
improved substantially. The NLO curve (dotted line) in
fig. 4 approaches the full result rather closely, however,
they only agree after some characteristic time. The latter
is determined by the time scale ~ f4amp for the effective
loss of details about the initial conditions. This can be ob-
served, e.g., from the decay of the unequal-time two-point
function shown in the inset. The latter measures correla-
tions at time ¢ with the initial state and its decay on the
time scale ~ tgamp coincides rather well with the time for
the onset of validity of the NLO result.

We have done a series of comparisons for various cou-
plings in ref. [4] and conclude that for times sufficiently
large compared to t4amp the gradient expansion seems to
converge well. There are sizeable NLO corrections already
for couplings of about A ~ 1/4. Nevertheless, one observes
that the NLO result can get rather close to the full result
for A < 1 [4]. Times shorter than about tgamp seem clearly
to be beyond the range of validity of transport equations
even for weak couplings. This should make them unsuit-
able to discuss aspects of apparent early thermalization
and stresses the need to employ proper equations such as
(4) and (5) for initial-value problems.

3 Beyond 2P| expansions: direct lattice
simulations

We have seen above that the techniques based on two-
particle or higher irreducible generating functionals are
crucial for our analytical understanding of nonequilibrium
quantum fields. However, analytical approaches necessar-
ily involve approximations such as a 2PI loop expansion.
Nonequilibrium approximations are difficult to test for
crucial questions of QCD, i.e. where strong interactions
can play an important role. Here direct numerical simula-
tions of the quantum field theory on a space-time lattice,
i.e. without truncations, could boost our knowledge and
trigger the development of further approximate analytical
tools.

Despite the importance of nonperturbative lattice sim-
ulation techniques in out-of-equilibrium quantum field
theory, these are still in its infancies. This is in sharp
contrast to well-established thermal equilibrium methods.
Equilibrium calculations can typically be based on an Eu-
clidean formulation, where the time variable is analyti-
cally continued to imaginary values. By this the quan-
tum theory is mapped onto a statistical-mechanics prob-
lem, which can be simulated by importance sampling
techniques. Nonequilibrium problems, however, are not
amenable to an Euclidean formulation. Moreover, for real
times standard importance sampling is not possible be-
cause of a nonpositive definite probability measure. A very
interesting recent development employs stochastic quan-
tization techniques for real times, which do not require a
probability distribution [8]. Clearly, the possibility of di-
rect simulations in nonequilibrium quantum field theory
would mark a breakthrough not only for the description
of QCD dynamics.
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In ref. [8] first lattice simulations of nonequilibrium
quantum fields in Minkowski space-time have been pre-
sented. For the example of a scalar field theory with quar-
tic self-interaction this was used to compute the time
evolution of correlation functions and characteristic time
scales. Starting from a nonthermal initial state, the real-
time quantum ensemble in 3+1 dimensions is constructed
by a stochastic process in an additional (5th) “Langevin
time” using the reformulation of stochastic quantization
for the Minkowskian path integral [9]. In addition to the
space-time variable z the field ¢ depends on the Langevin
time parameter ¢ with

o¢  56S[¢]
619—1W+77, (8)

where S denotes the classical action and 1 Gaussian or
white noise. For a real quantum field theory the Langevin
dynamics governs a complexr ¢ = ¢r + i¢1, where the ap-
pearance of an imaginary part reflects the fact that in the
quantum theory the field picks up a phase by evolving in
time.

The stochastic process (8) is associated to a real distri-
bution P(¢r, ¢1;9) and averages of observables A(¢) are
given as area integrals in the complex field plane:

(A), = f[d¢R] [do1]A(ér + id1) P(dR, ¢159) _

J1dor][d¢1] P(¢r, é1;9)
J1d¢r]A(PR) Pett (¢r; V)
J1d¢Rr] Pegt (¢r;0)

where the second equality defines the complex pseudo-
distribution P.g(¢r;¥). The latter is indeed governed by
the analytic continuation of the Fokker-Planck equation
to real times, which admits the stationary solution [9]

(9)

Jim Pog(ém;9) ~ etS9rl (10)

Thus the approach can in principle be used for a
Minkowskian theory, with “ensemble” averages calculated
as averages along Langevin trajectories.

Some properties seem to make the approach quite suit-
able for out-of-equilibrium calculations. Firstly, nonequi-
librium requires specification of an initial state or den-
sity matrix. Therefore, the initial configuration is fixed
which seems to stabilize the procedure. Moreover, the ad-
ditional averaging over an initial density matrix can help
to achieve fast convergence. Secondly, one typically has a
good guess for the (3 + 1)-dimensional starting configura-
tions of the Langevin updating procedure: In contrast to
the quantum theory, the corresponding classical statistical
field theory can be simulated using numerical integration
and Monte Carlo techniques [6]. Using the nonequilibrium
classical statistical solution as the starting configuration
can improve convergence. Here the classical field configu-
rations are obtained by numerically solving the classical
field equation of motion and sampling over initial con-
ditions, with nonzero field average and Gaussian fluctu-
ations. It also provides a crucial check of the quantum
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Fig. 5. The real part of ([ ®(0,Z)®(t,)) as a function of
time ¢ in units of the lattice spacing a. As starting configuration
(¥ = 0) the classical result is taken, and the Langevin updating
(¥ > 0) incorporates quantum corrections [8].

result in some limiting cases: For sufficiently large macro-
scopic field or occupation numbers classical dynamics can
provide a good approximation for the quantum evolution
at not too late times [10].

Figure 5 shows the time evolution for the connected
part of the unequal-time correlator Re([ @(0,Z)®(t,)),
which measures the correlation of the field at time t with
the initial field. It gives important information about the
characteristic time scale for the loss of details about the
initial conditions, as explained in sect. 1.

One finds good convergence properties of the quantum
simulations, which is a remarkable result. For given initial
field configurations at time ¢ = 0, very different start-
ing configurations for the (3 + 1)-dimensional space-time
lattice converge to the same nonequilibrium dynamics for
all ¢ > 0. To obtain this one had to resolve the prob-
lem of possible unstable dynamics for the updating proce-
dure [8]. Though more or less formal proofs of equivalence
of the stochastic approach and the path integral formula-
tion have been given for Minkowski space-time, not much
is known about the general convergence properties and its
reliability.

Two procedures can be employed for further tests of
the algorithm. Firstly, one can compare to analytical ap-
proximations based on two-particle irreducible effective
actions [11]. Secondly, going to sufficiently late times one
can compare to certain thermal equilibrium results from
FEuclidean simulations.

The range of potential applications of first-principle
simulations in nonequilibrium quantum field theory is
enormous. They may be used for out-of-equilibrium as
well as Minkowskian equilibrium properties extracted at
late times. Possible applications to QCD require imple-
mentation in a non-Abelian gauge theory, which is a work
in progress [11].

We thank Ion-Olimpiu Stamatescu and Christof Wetterich for
very fruitful collaborations on recent related work.
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